Proceedings of Perovskite Thin Film Photovoltaics (ABXPV17)
Publication date: 18th December 2016
The photoconversion efficiency of perovskite solar cells (PSCs) has been enhanced by the deposition of inorganic nanoparticles (NPs) at the interface between the compact TiO2 electron selective contact and the mesoporous TiO2 film. The NPs used have been core/shell Au@SiO2, where a thin SiO2 coating protects the Au core from the direct chemical interaction with CH3NH3PbI3 halide perovskite used as light harvesting material. Samples prepared with the Au@SiO2 NPs exhibits higher external quantum efficiency in all the complete wavelength range at which perovskite presents light absorption and not just at the wavelengths at which Au@SiO2 NPs presents their absorption peak. This fact rules out a direct plasmonic process as the responsible on cell performance enhancement. A detail characterization by photoluminescence, impedance spectroscopy and open circuit voltage decay unveil a modification of the interfacial properties with an augmentation of the interfacial electrostatic potential that increases both photovoltage and photocurrent. This work highlights the dramatic role of interfaces in PSC performance. The use of reduced quantities of highly stable inorganic compounds to modify the PSC interface instead of the extensively used organic compounds opens the door to a new surface engineering based on inorganic compounds